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cause of leukemia, and possibly lymphoma, in humans, but the underlying
molecular pathways remain largely undetermined. We used two microarray platforms to identify global gene
expression changes associated with well-characterized occupational benzene exposure in the peripheral
blood mononuclear cells (PBMC) of a population of shoe-factory workers. Differential expression of 2692
genes (Affymetrix) and 1828 genes (Illumina) was found and the concordance was 50% (based on an average
fold-change ≥1.3 from the two platforms), with similar expression ratios among the concordant genes. Four
genes (CXCL16, ZNF331, JUN and PF4), which we previously identified by microarray and confirmed by real-
time PCR, were among the top 100 genes identified by both platforms in the current study. Gene ontology
analysis showed overrepresentation of genes involved in apoptosis among the concordant genes while
pathway analysis identified pathways related to lipid metabolism. The two-platform approach allows for
robust changes in the PBMC transcriptome of benzene-exposed individuals to be identified.

© 2009 Elsevier Inc. All rights reserved.
Introduction
Benzene is an established cause of leukemia and a possible cause of
lymphoma in humans [1]. A possible mechanism underlying these
pathologies is the induction by benzene of genetic changes leading to
chromosome aberrations, translocations, aneuploidy and long-arm
deletions [2,3] along with alterations in cell differentiation and
immune surveillance. Benzene is hematotoxic, causing a decrease in
total white blood cells, granulocytes and lymphocytes even among
workers with relatively low-level exposure to benzene [4]. Benzene is
thought to lower blood cell counts via metabolite effects on
hematopoietic progenitor cells [4,5]. Depression of the mitogenic
response of B and T lymphocytes, as well as impairment of
macrophage activity, also results from benzene exposure [6]. Damage
to the bone marrow stromal microenvironment is another aspect of
benzene-associated hematoxicity [7,8]. Individual susceptibility to the
genotoxic and hematotoxic effects of benzene is mediated through
polymorphisms in DNA-repair genes [9], cytokine and cell adhesion
genes [10], and genes involved in benzene metabolism [4,11].
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While pathological outcome and susceptibility studies have
generated some understanding of the mechanisms of action of
benzene, global gene expression studies have the ability to inform
on a more detailed level the involvement of specific genes and
molecular pathways. The TP53-dependent nature of benzene toxicity
and carcinogenesis was revealed by examination of gene expression
changes in mouse bone marrow (BM) in response to a 2-week
exposure to inhaled benzene at 300 ppm [12]. Gene expression in
mouse hematopoietic stem cells (HSC) exposed to inhaled benzene
(100 ppm) implicated a number of response pathways including
apoptosis, growth control of damaged HSC, repair of damaged DNA,
and HSC growth arrest [13]. We previously identified several genes
(ZNF331, CXCL16, JUN, and PF4) altered by benzene in peripheral blood
mononuclear cells (PBMC) from benzene-exposed (N10 ppm) workers
compared with unexposed controls. The genes were identified by the
application of high-throughput microarray analysis to discover
potential biomarkers and relatively low-throughput real-time PCR
for confirmation [3].

In order to confirm previous findings and to discover more
differentially expressed genes associated with benzene exposure, in
the current study we analyzed more samples using the Affymetrix
microarray platform, and have expanded the study to include a second
microarray platform (Illumina). Recent reports have shown good
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inter-platform reproducibility of gene expression measurements
between these two platforms [14]. The approach integrates high-
throughput confirmation with discovery, helping to further elucidate
genetic pathways and mechanisms underlying hematoxicity induced
by benzene exposure.

Results

The PBMC transcriptome of 8 individuals occupationally exposed
to benzene compared with 8 matched controls was examined on two
microarray platforms. Distinct processing protocols appropriate to
each platform, from labeling through hybridization and detection,
were applied. Data was analyzed using a novel Quantile Transforma-
tion approach [15].

Cross-comparison of genes associated with benzene exposure by
Affymetrix and Illumina microarray platforms

On the Affymetrix platform, 2692 genes (represented by 3549
probes) were differentially expressed (raw p≤0.05). Considering
genes with expression levels altered by 1.5-fold or greater, 65 genes
were down-regulated while 180 genes were up-regulated. On the
Illumina platform, 1828 genes (1856 probes) were differentially
expressed (raw p≤0.05). Modification of expression levels by 1.5-fold
and higher occurred in 171 genes (88 down-regulated and 83 up-
regulated). Supplementary Tables S1 and S2 contain lists of all genes
identified as significant by Affymetrix and Illumina platforms,
respectively, and show multiple test correction values. Among the
Affymetrix data, 15 genes remained significant after multiple testing
using the Quantile Transformation (QT) approach while 1 gene
among the Illumina data remained significant.

The subset of genes that was identified as differentially expressed
(based on raw p-values) in common by both platforms was
determined using two approaches. First, only those genes identified
by each platform which were common to a stringent platform
comparison reference file (described in Materials and methods),
were analyzed by the same approach used to analyze the full
complement of genes from each platform. This approach yielded
1345 significant genes by Affymetrix and 1275 genes by Illumina,
which were directly comparable based on the reference file
(Supplementary Tables S3 and S4, respectively). We determined the
number of genes with a fold-change ≥1.3 (up or down) on both
Fig. 1. Concordance between platforms in the identification of genes induced by benzene
expression performed by t-test/quantile transformation (QT) are shown. A. Genes with fold-c
with an average fold-change ≥1.3-fold, based on the stringent comparison data set. C. Genes w
with an average fold-change ≥1.3-fold, based on the complete data set.
platforms and found a concordance of 35% (189 genes), Fig. 1A. We
also determined the number of common genes with an average fold-
change ≥1.3 (from both platforms) and found a concordance of 50%
(272 genes), Fig. 1B.

In the second, less stringent approach, all of the significant genes
identified by each platform (2692 by Affymetrix and 1828 by Illumina)
were compared by gene symbol. We determined the number of genes
with a fold-change ≥1.3 on both platforms in this less stringent data
set and found a concordance of 35% (241 genes), Fig. 1C. As above, we
also determined the number of common genes with an average fold-
change ≥1.3 (from both platforms) and found a concordance of 50%
(346 genes) similar to that obtained in the stringent comparison
dataset, Fig. 1D.

All concordant genes are listed in Supplementary Table S5.
Expression ratios were similar among the concordant genes (mean
difference in expression ratio=0.13, standard deviation=0.12). Among
the common genes, 57 genes were down-regulated while 66 genes
were up-regulated, by 1.5-fold or greater. Four genes (CXCL16, ZNF331,
JUN and PF4), which we previously identified by microarray and
confirmed by real-time PCR, were identified by both platforms in the
current study. JUN and ZNF331 are among the top 20 common genes
(ranked by p-value) which are listed in Table 1. Both of these genes
remained significant after correction for multiple testing (Quantile
Transformation) of the Affy data set (JUN QT-p=0.044; ZNF331 QT-
p=0.042), while ZNF331 remained significant (QT-p=0.039) and JUN
(QT-p=0.072) approached significance upon correction of the Illumina
data set. Other genes of note among the top 20 are HSPA1A and
HSPA1B, members of the heat-shock 70 (HSP70) multigene family.

Classification of genes by gene ontology and pathway analyses

Several GO categories were identified by GOstat as enriched among
both the Affymetrix and Illumina datasets (genes with ≥1.5-fold up- or
down-regulation). These GO categories, as well as their associated
genes, are listed in Table 2 and include immune response, defense
response, and response to stress, suggesting concordance between the
two platforms at the functional level. Genes involved in apoptosis
were significant among the Affymetrix dataset but not the Illumina
dataset. Among the genes identified by both platforms, GOstat
analysis showed significant association with the GO term apoptosis
(GO:0006915; p-value of 0.0113), but only when all genes were
included regardless of the magnitude of the fold-change.
exposure. The numbers of significant genes (p≤0.05) from the analysis of differential
hange ≥1.3-fold on both platforms, based on the stringent comparison data set. B. Genes
ith a fold-change ≥1.3-fold on both platforms, based on the complete data set. D. Genes



Table 1
Top 20 genes associated with benzene exposure cross-validated by Affymetrix and Illumina microarray platforms

Affymetrix Gene title Symbol RefSeq ID Illumina

ID p-valuea Ratiob ID p-valuea Ratio

Downregulated (N=6)
202581_at 3.98E−05 0.18 Heat shock 70 kDa protein 1B HSPA1B NM_005346 GI_26787974-S 3.74E−05 0.19
200799_at 6.57E−05 0.34 Heat shock 70 kDa protein 1A HSPA1A NM_005345 GI_26787973-S 1.48E−04 0.32
201466_s_at 1.47E−05 0.39 v-jun sarcoma virus 17 oncogene homolog (avian) JUN NM_002228 GI_44890066-S 2.43E−05 0.33
208960_s_at 1.45E−02 0.55 Kruppel-like factor 6 KLF6 NM_001008490 GI_37655156-S 1.10E−04 0.41
229054_at 4.37E−07 0.60 Chromosome 14 open reading frame 181 C14orf181 NM_207442 GI_42660305-S 1.92E−04 0.51
202014_at 1.33E−03 0.62 Protein phosphatase 1, regulatory (inhibitor) subunit 15A PPP1R15A NM_014330 GI_9790902-S 4.12E−05 0.55

Upregulated (N=14)
201939_at 1.05E−03 1.82 Polo-like kinase 2 (Drosophila) PLK2 NM_006622 GI_5730054-S 1.45E−04 1.62
227613_at 8.78E−03 1.82 Zinc finger protein 331 ZNF331 NM_018555 GI_20127571-S 6.38E−06 1.62
235568_at 5.09E−04 1.81 Chromosome 19 open reading frame 59 C19orf59 NM_174918 GI_27885012-S 9.11E−05 1.95
202856_s_at 5.84E−04 1.76 Solute carrier family 16 member 3 SLC16A3 NM_004207 GI_4759111-S 3.99E−04 1.69
216248_s_at 8.94E−03 1.74 Nuclear receptor subfamily 4, group A, member 2 NR4A2 NM_173173.1 GI_27894352 3.94E−04 1.47
200768_s_at 2.47E−03 1.64 Methionine adenosyltransferase II, alpha MAT2A NM_005911 GI_34147493-S 1.04E−04 1.98
218421_at 6.52E−04 1.51 Ceramide kinase CERK NM_022766 GI_32967302-A 3.86E−04 1.40
209272_at 2.24E−02 1.44 NGFI-A binding protein 1 (EGR1 binding protein 1) NAB1 NM_005966 GI_19923347-S 2.46E−04 1.47
219862_s_at 5.74E−04 1.38 Nuclear prelamin A recognition factor NARF NM_001038618 GI_14165459-A 1.84E−05 1.35
217964_at 1.81E−02 1.31 Tetratricopeptide repeat domain 19 TTC19 NM_017775 GI_22547158-S 2.05E−04 1.37
223093_at 2.27E−02 1.26 Ankylosis, progressive homolog (mouse) ANKH NM_054027 GI_34452701-S 3.99E−04 1.32
36554_at 5.28E−03 1.25 Acetylserotonin O-methyltransferase-like ASMTL NM_004192 GI_4757793-S 1.02E−04 1.29
223740_at 2.28E−03 1.24 Chromosome 6 open reading frame 59 C6orf59 NM_024929.1 GI_13376403 3.16E−04 1.55
205791_x_at 8.96E−03 1.23 Zinc finger protein 155, transcript variant 1 ZNF155 NM_198089 GI_37655172-A 2.63E−04 1.29

The central columns list gene title symbol, symbol and RefSeq ID, while platform-specific IDs, p-values, and differential expression ratios (relative to control) are detailed on the left
(Affymetrix) and right (Illumina).

a Raw p-values i.e. not adjusted for multiple testing are shown.
b Differential expression ratio.
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Ingenuity canonical pathway analysis identified significant path-
ways among the common genes as well as among the significant
genes from both platforms. Significant pathways and associated
genes are shown in Table 3. Lipid metabolism was a key theme
among the common genes with involvement of ganglioside
biosynthesis, glycerolipid metabolism, glycerphospholipid metabo-
lism and sterol biosynthesis pathways. From the Affymetrix dataset
protein ubiquitination was strongly impacted with 23 genes up-
regulated and 4 genes down-regulated. Among the Illumina dataset
multiple pathways were involved as shown in Table 3.

Evaluation of transcripts discordant between platforms

As described above the overall concordance between the two
platforms was 35–50%. The most significant genes (top 50 by p-value)
identified by either platform were more likely to be ranked as
significant by the other platform. Thus of the top 50 genes identified
by Illumina, 31 genes were ranked as significant by Affymetrix, raising
the concordance to 62%. Similarly, 27 of the top 50 genes identified by
Affymetrix also appeared in the Illumina dataset (concordance 59%).

Some genes, which were significant on one platform, approached
significance on the other platform. For example, C3AR1, which was up-
Table 2
Functional classification of genes modified by benzene exposure

GO term Genesa

Apoptosis RHOB; BCL2; SPP1; NLRP3; CUL4A; TNFSF14; NFKB1; ANXA1; STK17B
MAEA; BID; TLR2; HSPA1A; MX1

Immune response BCL2, CLEC5A, CXCL16, IFI6, IFNG, IL1R2, IL21R, ISG15, KLF6, MX1, PL
Defense response BCL2, CD69, CLEC5A, CXCL16, HIST2H2BE, IFI6, IFNG, IL1R2, IL21R, IS

(overlap N=14)
Response to stress BCL2, CLEC5A, CXCL16, DNAJB1, DUSP1, HIST2H2BE, HSPA1A, IFI6, IFN

SRXN1 (overlap N=14)
Inflammatory response NFKB1, CCR5, ANXA1, PLA2G7, SPP1, NLRP3, FPR2, CHST2, CXCL16, C3
Chromatin assembly H2BFS; HIST1H1C; HIST2H2AC; HIST1H2AC; HIST2H2BE; HIST1H2BH

GOStat was used to assess for enrichment of GO terms among the genes with significant di
a Genes associated with significant GO terms are listed; in the case of a GO term being a
b A χ2 test is used to generate a p-value and adjustment for multiple comparisons is base
regulated 2-fold on Affymetrix, approached significance on the
Illumina platform (p-value=0.056, ratio 1.38). In the case of FYN,
which was up-regulated significantly (1.4-fold) by Affymetrix, the
Illumina platform also detected up-regulation (1.2-fold) but only
approached significance (p=0.07) and therefore did not appear in the
list of common genes. As both of these genes were present in the
stringent comparison file, this suggests that the two platforms may
differ in their ability to detect small changes in expression for specific
probes.

Discussion

We identified robust changes in gene expression in response to
benzene exposure in 8 occupationally exposed individuals compared
with 8 unexposed controls, by cross-comparison using twomicroarray
platforms (Affymetrix and Illumina). This approach enabled identifi-
cation of a greater number of robust biomarkers than our previous
approach of single-platform array analysis in conjunction with
quantitative PCR confirmation.

A total of 346 genes were cross-validated by our two-platform
approach. Further validation was provided by the fact that four genes
(CXCL16, ZNF331, JUN and PF4), which we previously showed to be
Illumina Affymetrix

p-valueb No. of genes p-valueb No. of genes

; PPP1R15A; TRAF3; IFI6; CTSB; – – 0.0208 18

A2G7, TNFSF14 (overlap N=12) 2.58E−05 21 4.04E−14 37
G15, KLF6, MX1, PLA2G7, TNFSF14 8.23E−07 25 1.218E−13 39

G, ISG15, MX1, PLA2G7, PPP1R15A, 7.26E−06 26 2.17E−06 35

AR1, TLR2, IL1R1, CD93 – – 0.00121 13
; HIST2H2AA3 0.000819 7 – –

fferential expression ≥1.5-fold from both the Affymetrix and Illumina analyses.
ssociated with both platforms common genes are listed.
d on False Discovery Rate (FDR).



Table 3
Canonical pathways impacted by benzene exposure

Pathwaya Genes Affymetrix Illumina Common

p-valueb No. of genes p-value No. of genes p-value No. of genes

Death receptor signaling BCL2, CFLAR, CRADD, FASLG, IKBKE, NFKB2, TNFRSF1A – – 0.016 7 – –

ERK/MAPK signaling DUSP1, DUSP4, FOS, MYC, PIK3R1, PPARG, PPP1CB, PPP1R10, PRKAR2B,
RPS6KA1, SRC, STAT3

– – 0.024 12 – –

Ganglioside biosynthesis ST3GAL1, ST3GAL4, ST3GAL5, ST6GALNAC2, B3GALT4, ST8SIA4 0.046 4 0.00034 5 0.043 2
Globoside metabolism B3GALNT1, HEXA, ST3GAL1, ST8STA4 – – 0.022 4 – –

Glycerolipid metabolism AGPAT4, AGPAT6, CERK, DHRS9, DGAT2, GK, LAC89944, LPL, PPAP2B – – 0.026 9 0.019 6
Glycerophospholipid metabolism CERK, PPAP2B, HMOX1, PAFAH1B1, PLA2G7 – – – – 0.017 5
Il-10 signaling CCR5, FOS, HMOX1, IKBKE, IL1R2, JUN, NFKB2, RELB, STAT3 – – 0.0031 9 0.004 6
IL-6 signaling ABCB1, FOS, IKBKE, IL1R2, JUN, MAPKAPK2, NFKB2, STAT3, TNFRSF1A – – 0.0081 9 – –

PDGF signaling ABL1, FOS, JUN, MYC, PIK3R1, SRC, STAT3 – – 0.021 7 – –

PPAR signaling FOS, IKBKE, IL1R2, JUN, NCOA1, NFKB2, PPARG, RXRA,
STAT5A, TNFRSF1A

– – 0.0017 10 – –

Protein ubiquitination ANAPC1, BAP1, XIAP, BTRC, CUL1, IFNG, PSMA3, PSMB4, PSMC2, PSMC4,
PSMD2, PSMD4, PSMD11, PSMD12, SMURF2, UBC, UBE2I, UBE2Q1,
USP3, USP18, USP24, USP28, USP33, USP36, USP39, USP47, USP9X

0.0017 27 – – – –

Sterol biosynthesis FDFT1, HMGCR, MVD, SC5DL – – 0.025 4 0.019 3
Toll-like receptor signaling FOS, JUN, NFKB2, RELB, TLR2, TOLLIP – – 0.031 6 – –

a Derived from Ingenuity® Pathway Analysis of Affymetrix, Illumina and common datasets.
b Fischer's exact test is used to calculate the p-value.
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highly significantly associated with benzene exposure [3], were
present in the cross-validated dataset from the current study. JUN
was previously shown to be down-regulated by benzene exposure in
mouse HSC [13]. Expression of FOSB expression was also down-
regulated (∼1.6-fold) by both platforms in the current study. JUN and
FOS are basic region-leucine zipper (bZIP) members of the AP-1
transcription complex [16], which modulates the decision of a cell to
proliferate, differentiate, or die by apoptosis [17]. Since JUN promotes
proliferation of many cell types [17], reduced levels of JUN could
indicate that the PBMCs of benzene-exposed individuals are not
proliferating or progressing through the cell cycle as quickly as those
of non-exposed individuals. Platelet Factor 4 (PF4), a chemokine
secreted from activated platelets [18], activated T cells and mast cells
[19], is a chemoattractant for neutrophils and fibroblasts and plays a
role in inflammation and wound repair. PF4 was down-regulated in
the current study in agreement with previous observations [3,20].

We used gene ontology and pathway analyses to discern potential
underlying biology from the data. GO analysis showed enrichment in
genes involved in apoptosis among the 346 common genes, while
pathway analysis identified an impact on lipid metabolism. Plasma
cholesterol (and phospholipids) was found previously to be slightly
elevated in rat liver following a 28-day oral benzene exposure [21].
Lipid levels have been shown to be altered in hematological disorders
including acute leukemia and non-Hodgkin lymphoma [22], CLL [23]
and ALL [24] and might represent a novel therapeutic target [23]. It is
unclear whether changes in lipidmetabolism are causal inmalignancy
or arise as a consequence of the disease process. It is known that
changes in lipid metabolism occur during infection and that TNF and
other cytokines are capable of altering lipid metabolism in a variety of
tissues leading to hypertriglyceridemia [25,26]. The potential link
between benzene exposure, lipid metabolism and leukemogenesis is
unclear. One possibility is that maintenance of the phospholipid
membrane may be compromised during oxidative stress arising from
benzene exposure.

The fact that PBMC profiling reflects liver gene expression is not
surprising in view of a recent study showing that the peripheral blood
transcriptome dynamically reflects systems wide biology with 83% of
liver genes also expressed in blood [27]. Genes involved in the GO
categories of immune response, stress response and defense response
were enriched in the separate platform datasets, with overlap of genes
between platforms. Therefore, despite the fact that concordance
between the microarray platforms was 35–50%, several mechanisms
(concordance at the pathway level) underlying benzene effects in
human PBMC are in close agreement and fit well with the phenotypic
effects of benzene including decreased blood cell counts [5], and
depression of the immune system [6].

Chromatin assembly was identified as an overrepresented GO
category in the Illumina data only. If confirmed, it could represent a
potential mechanism by which benzene causes leukemia as histone
proteins are involved in the regulation of DNA transcription,
replication, repair and recombination and post-translational modifi-
cations on histone tails epigenetically regulate the genome-wide
transcriptome. Reduction of histone levels such as by the Human T
Lymphotropic Virus Type 1 protein, Tax [28], ionizing radiation (IR)
[29], adriamycin [29], and if confirmed, benzene, may directly induce
chromosomal instability and deregulate gene expression, leading to
cancer. Reduced histone levels have been proposed to have similar
effects to those observed with loss of imprinting (LOI) through DNA
hypomethylation, including aberrant chromosome rearrangements,
deregulation of cellular gene expression and activation of latent viral
genomes [28]. Chromatin structure, nucleosome remodeling and
histone tail modifications influence double-strand DNA break repair
[30–33] and defects in chromatin assembly have been shown to
impair double-strand break repair and activate S phase arrest [34,35].

In the current study the BAX:BCL2 ratio, an indicator of the degree
of apoptosis was 1:0.5, suggesting a shift towards apoptosis. Down-
regulation of two anti-apoptotic hsp70-encoding genes [36] was also
observed in the current study. Increased apoptosis is a mechanism
that could potentially underlie benzene-associated leukemia, one
theory being that cells escape from apoptosis with DNA breaks which
can result in chromosomal translocation [37–39], and induction of
apoptosis in hematopoietic progenitor cells [40,41] and cell lines [42]
by benzene metabolites has been previously demonstrated. Removal
of cells predestined to die by apoptosis is facilitated, at least in some
tissues by macrophages [43,44], and dysfunction of macrophages may
lead to survival of cells that would otherwise have been removed.
Poisoning of the BM stromal environment [7], particularly macro-
phages [8], is a hematotoxic effect of benzene.

While overall concordance between the two microarray plat-
forms was 35–50%, the most significant genes identified by either
array were much more likely to be ranked as significant by the other
platform. While very high concordance levels have been reported
(∼90%) between the Affymetrix and Illumina platforms, these were
based on extremely different biological samples with large fold
changes in expression [14]. Smaller concordance levels were seen
when comparing less biologically similar samples [14] or analyzing
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rat toxicogenomic data [45]. Our study was based on occupationally-
exposed individuals with inherent inter-individual variability in
baseline expression, determined by factors such as blood count,
blood type, genotype, presence of subclinical infection [46], which
are less easy to control for by study design as are factors such as age
and gender. Other explanations of microarray data discordance have
been discussed [14,47]. Our inter-platform concordance is higher
than that of two studies using a similar approach to ours, which
showed average concordances of 22.8% [48] and ∼10%) [49].

As well as concordance among individual genes, similar mechan-
isms of benzene effect such as response to stress and immune
response were found in our study. However the results potentially
caution against use of a single platform to identify biomarkers/
pathways in human exposure studies, in which subtle perturbations
may be detected. Our data also suggest the need to be very stringent in
the selection of potential biomarkers based on a single platform as
platform concordance was much higher among the most highly
significant genes.

Challenges are inherent to this type of molecular epidemiology
study. While many potential biomarkers of benzene exposure were
generated, few genes remained significant after multiple testing (QT
p-value≤0.05). Another challenge is the biological relevance of small
fold-changes in gene expression. Increasing the number of individuals
studied is one way to increase the power to select true biomarkers.
Cross-comparison by two platforms increases the chances that the
genes identified in our study represent true potential biomarkers, but
validation of biomarkers in a larger population is also necessary, at
both the RNA and protein levels. While limited sample material
precluded the validation of the microarray findings by QPCR in the
current study, use of two microarray platforms offers a type of
inherent validation in that distinct processing protocols appropriate to
each platform, from labeling through hybridization and detection,
were applied.

The questionof the appropriateness of PBMCas a cell target inwhich
to examine benzene's hematotoxic effects must also be addressed.
While some of benzene's immunotoxic effects are thought to involve
damage to BM stromal cells [7] and early progenitor cells [4] the knock-
on effects of damage to these cells might be expected to be manifest in
the transcriptome of their downstream cell targets. As discussed above,
the peripheral blood transcriptome dynamically reflects system wide
biology [27]. However, relevant changes may be masked by looking at
heterogenous populations of cells e.g. BM compared with HSC [13].
Many of the genes identified in this study are expressed in several cell
types and have pleiotropic effects, making it challenging to induce
function and mechanism when examining PBMC. Further, as benzene
exposure has been shown to decrease all types of white blood cells and
platelets, by 16% (lymphocytes) to 35.8% (B cells) [4], some of the
observed changes in expression could reflect these altered cell
populations. However, PBMC are convenient for molecular epidemiol-
ogy research studies and pathways and mechanisms identified as
potentially impacted by benzene exposure such as apoptosis, can be
further tested in in vitro studies using targeted cell subsets.

In conclusion, we have demonstrated robust changes in the PBMC
transcriptome of benzene-exposed individuals, using a two-platform
approach. The genes identified contribute to further understandingof the
mechanisms underlying benzene-induced hematoxicity and leukemia.

Materials and methods

Study subjects

Eight highly exposed workers (mean air benzene level±SD=39.0±
25.5 ppm) and eight unexposed controls (b0.04 ppm) who were
frequency-matched to these subjects on the basis of age and gender,
were chosen from a large molecular epidemiology study [50]
investigating occupational exposure to benzene. Six subject pairs
(twelve individuals) were included in a previous study [3] and another
pair was chosen to give a better balance among the subjects for the
confounders of age and gender. The study was approved by
institutional review boards at all institutions. Participation was
voluntary, written informed consent was obtained, and the participa-
tion rate was approximately 95%.

Four pairs were male and the other four were female. Mean age
was 33.5±7.0 years for the eight exposed workers and 35.4±7.0 years
for the controls. Four of the exposed workers and one of the control
workers were smokers. Mean white blood cell count (mean±SD
cells/μL blood) was 4812.5±974.6 for the exposed workers compared
with 5762.5±1785.6 for controls (normal range for Chinese popula-
tion 4000–10,000). Similarly, in the exposed workers granulocyte
(2862.5±652.3) and platelet (160,750±36,405.5) counts were lower
than in the control workers (granulocyte 3562.5±1261.5, platelet
209,875±74,299.5), but still within the normal range for the Chinese
population (2000–8000, 100,000–361,500, respectively). Hemoglo-
bin (g/L) was 139.9±15.5 in the exposed workers and 145.8±19.5 in
the controls (normal range 110–170). Among all 390 subjects (140
controls and 250 benzene-exposed) in the overall molecular
epidemiology study, all types of white blood cells (WBCs) measured
and platelets were significantly decreased in workers exposed to
N10 ppm benzene (and also in those exposed to doses as low as
b1 ppm benzene) compared to controls [4]. Exposure assessment,
biologic sample collection and RNA isolation were described
previously [3,4]. Workers had been employed an average of
6.1±2.9 years and individual benzene exposure was monitored
repeatedly up to 16 months before phlebotomy. A single RNA
isolation was performed from each individual and stored in aliquots.

Affymetrix microarray analysis

The Affymetrix Human U133 GeneChip set containing ∼44,000
probes targeting N39,000 unique transcripts derived from approxi-
mately 33,000 well-substantiated genes, are included in this chip set.
The complete protocol used for Affymetrix microarray analysis was
described previously [3].

Illumina microarray analysis

RNA samples, with A260:A280 ratios between 1.7 and 2.1, and with
integrity confirmed by denaturing agarose gel electrophoresis, were
labeled using the Illumina® RNA Amplification kit (Ambion, Austin,
TX). Samples were reverse transcribed in 20 μL reactions comprising
200 ng sample RNA,1× First Strand Buffer, dNTPs, RNase inhibitor, and
ArrayScript enzyme. Reactions were incubated at 37 °C for 2 h after
which components of the second strand synthesis reaction including
10× Second Strand Buffer, dNTP mix, DNA polymerase, and RNase H
were added to yield a final reaction volume of 100 μL. Reactions were
incubated at 16 °C for 2 h and the resulting cDNAswere purified. cDNA
binding buffer (250 μL) was added to each reaction which was then
mixed and passed through a cDNA filter cartridge by centrifugation at
10,000 ×g for 1 min. Filters were washed with wash Buffer (500 μL)
and dried by centrifugation for an additional minute. cDNAwas eluted
using 2×10 μL aliquots of Nuclease-free Water at 55 °C. The purified
cDNAwas dried to completion in a vacuum centrifuge concentrator set
to medium heat and resuspended in 10 μL in vitro transcription (IVT)
reaction mix comprising 1× reaction buffer, dNTP mix, biotin labeled
UTP (10mM; Roche Applied Science, Indianapolis, IN), and T7 enzyme.
Reactions were incubated at 37 °C for 14 h after which volumes were
adjusted to 100 μL by addition of Nuclease-free water. cRNA Binding
Buffer (350 μL) and 100% ethanol (250 μL) were added and mixed by
pipetting before passing through a cRNA filter cartridge under
centrifugation at 10,000 ×g for 1 min. Filters were washed with
wash Buffer (650 μL) and dried by centrifugation for an additional
minute. cDNAwas eluted using 100 μL of Nuclease-freeWater at 55 °C.
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cRNA was quantified using the RiboGreen®
fluorescence-based assay

(Invitrogen, Carlsbad, CA).
Hybridization, washing and detection were performed using the

Illumina Gene Expression System Buffer Kit for HumanRef-8 Bead-
Chips (Illumina, San Diego, CA) according to the manufacturer's
protocol. An aliquot containing 850 ng cRNAwas transferred to a new
tube and adjusted to a volume of 11.3 μL. Hybridization Mix was
prepared by mixing Hyb E1 buffer (125 μL), which had been
prewarmed in a 55 °C oven for 10 min, to formamide (75 μL).
Hybridization Mix (22.7 μL) was added to each cRNA sample.
Following sample incubation at 65 °C for 5 min, 34 μL was dispensed
onto the center of each HumanRef-8 BeadChip array. BeadChips were
assembled onto Hybridization cartridges, mixed by shaking to ensure
bubbles moved freely, and then placed on the BeadChip Hyb Wheel
and incubated for 16 h at 55 °C with rotation.

Following hybridization, a manual washing procedure was
followed in which BeadChips were placed in a slide rack and washed
in supplied solutions in glass staining dishes. Slide racks were plunged
in and out of the appropriate solution 5–10 times and thenmixingwas
performed on an orbital shaker (Thermolyne Roto Mix, Type 50800,
Barnstead International, Dubuque, IA) at highest possible speed or on
a rocker shaker (Rocker II 260350, Boekel Scientific, Feasterville, PA) at
medium-high speed, for the times indicated. Following hybridization,
slides werewashed successively inwash E1BC solution (250mL),100%
ethanol (250 mL), and fresh Wash E1BC solution (250 mL), with
15 min, 10 min and 2 min orbital shaking, respectively. In order to
block the slides, BeadChips were placed face-up in a wash tray
(supplied) containing Block E1 buffer (4 mL) and rocked for 10 min.
For detection BeadChips were transferred to a fresh wash tray
containing Block E1 buffer (2 mL) containing streptavidin-Cy3 (1 μg/
mL; Amersham Biosciences, Piscataway, NJ) and rocked for 10 min.
Slides were then placed in a staining rack and washed in Wash E1BC
solution (250 mL) with 5 min of orbital shaking. The slides were then
dried by centrifugation at 275 ×g for 4 min at 20 °C in a Jouan CR4.22
centrifuge (Thermo Electron Corporation, Waltham,MA) and stored in
the dark until scanned. Scanning was performed using a BeadArray
Reader and BeadScan software (Illumina).

Data analysis

Raw data files for eachmicroarray experiment have been deposited
at GEO, accession number Series GSE9569 (GSM241938 through
GSM243811) and access is available at: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?token=dhovtgesoygsyng&acc=GSE9569.

Data was normalized by quantile normalization using Bioconduc-
tor (Affymetrix data by RMA and Illumina data by “Affy” package) and
two-sampleWelch t-statistics (unequal variance) were calculated. We
used a multiple testing procedure that controls Family Wise Error
rates (FWER) and has been shown to provide sharp control (for
instance relative to the standard Bonferroni procedure) by accounting
for the strong correlation of gene expression measures typically
observed in microarray studies [51]. It works using a re-sampling
based technique (bootstrapping) to generate a sample of the test
statistics from the empirical joint distribution of the data and then
quantile transforms these random samples into the appropriate
marginal null distribution (in this case, the t-distribution). Then, the
observed test statistics are compared to themaximum of each random
draw from this null distribution to derive the estimated FWER for
various cut-offs in a list ordered by statistical significance. In the
Supplementary Tables, we also provide the more traditional (and
typically conservative) methods for reporting FWER.

Comparison of array platforms

In order to determine comparable targets from the Affymetrix
(Human U133 GeneChip set; ∼45,000 probe sets targeting 39,000
transcripts from 33,000 well-substantiated genes) and Illumina
(HumanRef-8 BeadChip; N23,000 RefSeq-curated gene targets) plat-
forms, probe sequences from each platform and transcript sequences
from RefSeq Release 13 (http://www.ncbi.nlm.nih.gov/RefSeq/) were
compared. For both platforms, probes that were not valid were filtered
out. A probe was defined as valid if it perfectly matched a transcript
sequence and did not perfectly match any other transcript sequences
with a different gene symbol. If a transcript sequence contained
multiple valid probes, the one closest to the 3′ end of the transcript
was selected. As cDNA synthesis is primed by olgodT primers from the
polyA tails of the mRNAs, this minimizes the effects of RNA
degradation on cDNA integrity. Based on these criteria 14,708 targets
were included in the cross-platform analysis.

In a second approach, all the significant genes identified by each
platform (2692 by Affymetrix and 1828 by Illumina) were subjected to
an ID conversion program called Gene Expression Pattern Analysis
Suite v3.1 (http://www.gepas.org) [52] and significant gene lists were
then compared by gene symbol.

Pathway analysis

Gene RefSeq accession numbers were imported into Ingenuity
Pathway Analysis software (Ingenuity® Systems, Redwood City, CA),
(www.ingenuity.com) a web-based application, which queries the
Ingenuity Pathway Knowledge Base (IPKB) for genetic interactions. To
evaluate the significance of the association of a particular gene setwith
the relevant canonical pathwaywithin Ingenuity, a ratio of the number
of genes from the data set thatmap to the pathway divided by the total
number of genes that map to the canonical pathway is displayed and
Fischer's exact test is used to calculate the corresponding p-value.

Gene ontology analysis

A publicly available tool was applied to assess enrichment of
Gene Ontology (GO) terms over that which would be expected by
chance alone. In GOstat [50], a χ2 test is used to generate a p-value.
Adjustment for multiple comparisons is based on False Discovery
Rate (FDR).
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